If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2=112
We move all terms to the left:
4y^2-(112)=0
a = 4; b = 0; c = -112;
Δ = b2-4ac
Δ = 02-4·4·(-112)
Δ = 1792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1792}=\sqrt{256*7}=\sqrt{256}*\sqrt{7}=16\sqrt{7}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{7}}{2*4}=\frac{0-16\sqrt{7}}{8} =-\frac{16\sqrt{7}}{8} =-2\sqrt{7} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{7}}{2*4}=\frac{0+16\sqrt{7}}{8} =\frac{16\sqrt{7}}{8} =2\sqrt{7} $
| 531=(x*6)+21 | | -175=5x+4(4x-7) | | 6+14x=12+21x−7x | | 4(0+5y)+3y=23 | | 2(x+3.00)=18.60 | | s^2+14s-31=3 | | 3/7m=42 | | u-4/6=2/9 | | 10x −4=2 | | 834=14s978-10s | | 2=(3+4y) | | 117=9-9x | | 180-x=71.8 | | 10(2x-1=0 | | 2p+1=3-12 | | 180-71.8=x | | 16/9=64/m | | a+(2/5)=(9/10) | | 119+42+x=180 | | -3/2x-2=-4x+3 | | 1,025=(x*9)+17 | | (6+y)(5y-3)=0 | | 3y-2(3-3y)=12 | | 28x-2=10x+1 | | 34(x+8)=934(x+8)=9 | | 5^2x+3=15 | | 1/5x+1/4=3/7-4/5x+3/7 | | √x–3+5=x | | 15-4n=9+2n | | 7w-(9w-15)=14-(w+19) | | 2(k−5)+3k=k | | 3y+2(0-5y)=-21 |